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Introduction

● Linux Kernel
● Unix like
● Syscalls

– Behind a syscall, there are callbacks so tons of code
● IOCTLs
● GPLv2 : Source code is available
● 15+ millions lines of code

– Complexity = bugs, maybe vulnerabilities



  

Introduction

● Hacking the Linux kernel :
● Memory leak
● Memory corruption
● Bad initialization
● Bad assumption, optimisations, etc

● Goal : Get ROOT
● WARNING : This is an exploit intro



  

Vulnerabilities

● NULL Dereference
● Memory leak :

● Unitialized values
● Files : /proc/kallsyms , /proc/slabinfo , etc
● __copy_to_user() (!= copy_to_user())
● Etc

● Memory corruptions
● Overflows : stack based, stack, heap based, etc

● Race conditions



  

NULL Pointer Dereference

● It seems to be the most common
● Yes, it was (is?) exploitable in kernel

● Userland is from 0x0 to 0x8000 0000
● You could (can?) map page 0x0 in your 

exploit ;)

● Still a good example for understanding 
kernel exploitation



  

Memory Leaks

● These are important as they will allow you 
to improve the reliability of your exploit

● Might be necessary if you've got canaries 
and whatsoever



  

Memory Corruptions

● Stack based : everybody knows about RET

● Stack overflow : Yes for real, see Stackjack

● Heap based : SLAB, SLUB



  

Race conditions

● A race for resources usually
● Well known : TOCTOU

● To increase your chance to win a race, you can 
slow down your opponents
● Influence the scheduler
● Force page swapping
● etc



  

Payloads



  

Kernel code exec, so what?

● Code exec in kernel = keys to the kingdom

● So, escalation privilege is quite enough

● You want more action? (rootkits, etc)
● LKM : Linux Kernel Module, load it



  

Privilege escalation

● 2 types of payloads
● Before 2.6.29 Kernel
● After 2.6.29 Kernel



  

Privilege escalation

● 2 types of payloads
● Before 2.6.29 Kernel
● After 2.6.29 Kernel



  

Before 2.6.29

// get root before 2.6.29 kernel

void get_root_pre_2_6_29 (void)

{

    uid_t uid, *cred;

    size_t byte;

    uid = getuid();

    cred = get_task_struct();

    if (!cred)

        return;

    for (byte = 0; byte < PAGE_SIZE; byte++) {

        if (cred[0] == uid

                && cred[1] == uid

                && cred[2] == uid) {

            cred[0] = cred[1] = cred[2] = cred[3] = 0;

            cred[4] = cred[5] = cred[6] = cred[7] = 0;

        }

        cred++;        

    }

}



  

Why?

/*

Kernel 2.6.23

include/linux/sched.h

*/

struct task_struct {

    /* ... */

    /* process credentials */

    uid_t uid,euid,suid,fsuid;

    gid_t gid,egid,sgid,fsgid;

    struct group_info *group_info;

    kernel_cap_t   cap_effective, cap_inheritable, cap_permitted;

    unsigned keep_capabilities:1;

    struct user_struct *user;

    /* ... */

};



  

After 2.6.29

// get root after 2.6.29 kernel

void get_root_post_2_6_29 (void)

{

    int (*commit_creds)(void *) = get_ksym("commit_creds");

    void* (*prepare_kernel_cred)(void *) = 
get_ksym("prepare_kernel_cred");

    commit_creds(prepare_kernel_cred(NULL));

}



  

Why?

/*

Kernel 2.6.30

include/linux/sched.h

*/

struct task_struct {

    /* ... */

    /* process credentials */

    const struct cred *real_cred; /* objective and real subjective task

                                                         * credentials (COW) */

    const struct cred *cred; /* effective (overridable) subjective task

                                                 * credentials (COW) */

    struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */

    /* ... */

};



  

Exploitation



  

Kernel Exploit requirements

● Fully reliable
● Crash = Kernel Panic, bye you lost

● Heuristics
● Vulnerabilities
● Kernel payload



  

Root in 3 big steps

● Prepare

● Trigger vulnerability

● Trigger payload



  

Prepare

● Information leak
● /proc/kallsyms , /boot/System.maps , etc
● read-what-where

● Prepare memory layout (heap, stack, whatever)

● Place shellcode



  

Trigger Vulnerability

● write mem

● read mem

● Increment

● etc



  

Trigger payload

● Escalate privilege

● Fix overwritten/corrupted memory

● Do something as root : Launch shell, 
whatever



  

Exploitation

NULL Pointer Dereference
Forgotten Initializations

CVE-2009-2692



  

CVE-2009-2692

// net/bluetooth/l2cap

// kernel 2.6.23

static const struct proto_ops l2cap_sock_ops = {

    .family = PF_BLUETOOTH,

    .owner = THIS_MODULE,

    .release = l2cap_sock_release,

    .bind = l2cap_sock_bind,

    .connect= l2cap_sock_connect,

    .listen = l2cap_sock_listen,

    .accept = l2cap_sock_accept,

    .getname = l2cap_sock_getname,

    .sendmsg = l2cap_sock_sendmsg,

    .recvmsg = bt_sock_recvmsg,

    .poll = bt_sock_poll,

    .mmap = sock_no_mmap,

    .socketpair= sock_no_socketpair,

    .ioctl = sock_no_ioctl,

    .shutdown = l2cap_sock_shutdown,

    .setsockopt = l2cap_sock_setsockopt,

    .getsockopt = l2cap_sock_getsockopt

};



  

Okay, what's wrong?

● sendpage() callback is not initialized
● It's NULL!

● NULL Pointer Dereference
● Root shell



  

Trivial Exploitation

● mmap(NULL)
● memcpy (NULL, payload, sz_payload)
● sendfile (sockfd);

● sendfile() calls sendpage() behind the curtain

● Spawn root shell



  

Exploitation

NULL Pointer Dereference : TUN



  

TUN is NULL

/*

drivers/net/tun.c

*/

static int tun_chr_open(struct inode *inode, struct file * file)

{

    /* ... */

    tfile->tun = NULL;

    /* ... */

}



  

TUN vuln

static unsigned int tun_chr_poll(struct file *file, poll_table * wait)

{

    struct tun_file *tfile = file->private_data;

    struct tun_struct *tun = __tun_get(tfile);

    struct sock *sk = tun->sk;

    unsigned int mask = 0;

    if (!tun)

        return POLLERR;

    /* ... */

    if (sock_writeable(sk) ||

        (!test_and_set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags) &&

         sock_writeable(sk)))

            mask |= POLLOUT | POLLWRNORM;

    /* ... */

    return mask;

}



  

test_and_set_bit()

/**

 * test_and_set_bit - Set a bit and return its old value

 * @nr: Bit to set

 * @addr: Address to count from

 *

 * This operation is atomic and cannot be reordered.

 * It also implies a memory barrier.

 */

static inline int test_and_set_bit(int nr, volatile unsigned long *addr)

{

    int oldbit;

    asm volatile(LOCK_PREFIX "bts %2,%1\n\t"

                    "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");

    return oldbit;

}



  

TUN NULL Deref Exploit Part 1

● Open/Close /dev/net/tun (force loading)
● Resolve symbols
● Open /dev/net/tun
● mmap() NULL page
● Set target address at 

&(NULL->sk_socket->flags)
● No mmap() for TUN so mmap() == NULL



  

TUN NULL Deref Exploit Part 2

● Set trampoline at address 1 so it jumps to 
payload

● Copy payload in memory
● Call mmap() on TUN fd

→Payload triggering

● Spawn root shell



  

Fix : in the code
diff --git a/drivers/net/tun.c b/drivers/net/tun.c

index a1b0697..bcbb25e 100644

--- a/drivers/net/tun.c

+++ b/drivers/net/tun.c

@@ -482,12 +482,14 @@  static unsigned int tun_chr_poll(struct file *file, poll_table * wait)

 {

 struct tun_file *tfile = file->private_data;

 struct tun_struct *tun = __tun_get(tfile);

- struct sock *sk = tun->sk;

+ struct sock *sk;

 unsigned int mask = 0;

 

 if (!tun)

 return POLLERR;

 

+ sk = tun->sk;

+

 DBG(KERN_INFO "%s: tun_chr_poll\n", tun->dev->name);

 

 poll_wait(file, &tfile->read_wait, wait);



  

Fix : For the compiler

--- a/Makefile

+++ b/Makefile

@@ -351,7 +351,8 @@  KBUILD_CPPFLAGS := -D__KERNEL__

 

 KBUILD_CFLAGS   := -Wall -Wundef -Wstrict-prototypes -Wno-trigraphs \

    -fno-strict-aliasing -fno-common \

-    -Werror-implicit-function-declaration

+    -Werror-implicit-function-declaration \

+    -fno-delete-null-pointer-checks

 KBUILD_AFLAGS   := -D__ASSEMBLY__

 

 # Read KERNELRELEASE from include/config/kernel.release (if it exists)



  

Exploitation

VMSplice : Funky overflow
RDS : write-what-where

perf_events : Integer issues



  

VMSplice

● Control of a iovec

● Overflow of some page mapping

● Code execution through dtor call (which 
points to our payload)



  

RDS Vuln

● It is a write-what-where

● Overwrite a callback
● IOCTL() callback in the Rosenberg's exploit



  

RDS Exploitation

● RDS Exploitation
● Create and bind sockets
● Resolve kernel functions
● Overwrite RDS ioctl() callback with OURS
● Trigger payload : privilege escalation
● Fix ioctl() callback
● Spawn root shell



  

perf_events_init vuln

● Exploit for 64 bits system

● int to uint64_t conversion bug

● Unbounded increment/decrement

● increment upper half of an INT handler
● INT handler have the form : 0xffffffff BBBB and 0xBBBB is in userland 

here
● You know the rest



  

Exploitation

A live exploit demo



  

write-where

● Write a specific value at an arbitrary place

● It IS exploitable



  

The challenge

● Root a custom VM with an added 
vulnerable syscall

● Challenge writen by Jason Donenfeld

● See code



  

The vulnerability

SYSCALL_DEFINE2(ptree, struct prinfo *, buf, unsigned int *, nr)

{

    /* ... */

   count = 0;

    /* ... */

    // nr is an arbitrary kernel address

    // so this call fail and we go to out

    if (get_user(max, nr)) {

        ret = -EFAULT;

        goto out;

    }

    /* ... */

out:

    // nr is our kernel address

    // count is equal to 0

    // -> put zero to an arbitrary location!

    *nr = count;

    return ret;

}



  

Exploitation

● Resolve symbols
● Copy shellcode
● Patching callback in a proto_ops struct
● Trigger payload : Escalate + Fix
● Spawn root shell



  

Demo Time



  

Mitigations
&

Bypasses



  

Distributions Mitigations

● NULL PTR Dereference?
● mmap_min_addr = 64K

● Infoleak?
● Files not readable or wrong values
● Bug fixing

● Still no Kernel ASLR



  

Distributions Bypass

● mmap_min_addr
● Patch the value
● Don't use NULL page
● Use a trick/vuln : Pulse Audio NULL mmap()

● No infoleak
● Who cares? You got the kernels, hardcode 

addresses ;)

● Yeah, still no Kernel ASLR



  

GRSec's Mitigations

● No NX
● User-land AND Kernel-land ASLR
● UDEREF = Separated K and U spaces
● Sanitize free() memory
● Protect some kernel memory from leaks
● etc



  

GRSec Bypass

● Stackjacking : Patched in matter of days

● Find 0day attack technique



  

Conclusions

● Any mistake can have disastrous effects in kernel-land

● Kernel exploitation still has a bright future
● Lots of CVE still coming out about core

● Kernels are less protected

● You get ROOT

● What's next?



  

Thank you for listening

Questions?



  

If you want to go further

● “A Guide to Kernel Exploitation” book
● Read exploit AND kernel code
● Read talks/write-ups/etc :

● Dan Rosenberg
● Jon Oberheide
● Etc

● Remote Kernel exploitation



  

References

● “A guide to kernel exploitation” book
● Various exploits
● “Attacking the Core : Kernel Exploiting 

Notes”, Phrack 64
● Blogs : LWN, Rosenberg's, Oberheide's
● Mainly kernel source code
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